Protocol for Robust In Vivo Measurements of Erythrocyte Aggregation Using Ultrasound Spectroscopy.
نویسندگان
چکیده
Erythrocyte aggregation is a non-specific marker of acute and chronic inflammation. Although it is usual to evaluate this phenomenon from blood samples analyzed in laboratory instruments, in vivo real-time assessment of aggregation is possible with spectral ultrasound techniques. However, variable blood flow can affect the interpretation of acoustic measures. Therefore, flow standardization is required. Two techniques of flow standardization were evaluated with porcine and equine blood samples in Couette flow. These techniques consisted in either stopping the flow or reducing it. Then, the sensibility and repeatability of the retained method were evaluated in 11 human volunteers. We observed that stopping the flow compromised interpretation and repeatability. Conversely, maintaining a low flow provided repeatable measures and could distinguish between normal and high extents of erythrocyte aggregation. Agreement was observed between in vivo and ex vivo measures of the phenomenon (R2 = 82.7%, p value < 0.0001). These results support the feasibility of assessing in vivo erythrocyte aggregation in humans by quantitative ultrasound means.
منابع مشابه
Does Long-Term Administration of a Beta-Blocker (Timolol) Induce Fibril-Based Cataract Formation In-vivo?
Timolol is a non-selective beta-adrenergic receptor antagonist administered for treating glaucoma, heart attacks and hypertension. In the present study, we set out to determine whether or not timolol can provoke cataract formation, thus the influence of timolol on the amyloid-type aggregation of crystallin was investigated. We then provided experimental evidence of crystallin aggregation and it...
متن کاملPhotoacoustic ultrasound spectroscopy for assessing red blood cell aggregation and oxygenation.
Red blood cell (RBC) aggregation and oxygenation are important markers for a variety of blood disorders. No current technique is capable of simultaneously measuring aggregation/oxygenation levels noninvasively. We propose using photoacoustic ultrasound spectroscopy (PAUS) for assessing both phenomena. This technique relies on frequency-domain analysis of the PA signals by extracting parameters ...
متن کاملIn Vivo Venous Assessment of Red Blood Cell Aggregate Sizes in Diabetic Patients with a Quantitative Cellular Ultrasound Imaging Method: Proof of Concept
BACKGROUND Diabetic patients present higher level of red blood cell (RBC) aggregation contributing to the development of vascular complications. While it has been suggested that this hematology/rheology parameter could bring additional prognostic information for the management of those patients, RBC aggregation screening is not included as a clinical practice. Most medical centers are not equip...
متن کاملUltrasonic parametric imaging of erythrocyte aggregation using the structure factor size estimator.
Ultrasound characterization of erythrocyte aggregation (EA) is attractive because it is a non-invasive imaging modality that can be applied in vivo and in situ. An experimental validation of the Structure Factor Size Estimator (SFSE), a non-Rayleigh scattering model adapted for dense suspensions, was performed on 4 erythrocyte preparations with different aggregation tendencies. Erythrocyte prep...
متن کاملIncreased Shear Rate Resistance and Fastest Kinetics of Erythrocyte Aggregation in Diabetes Measured With Ultrasound
OBJECTIVE To measure with ultrasound the increased erythrocyte aggregation (EA) kinetics and adhesion energy between erythrocytes in patients with type 2 diabetes and poor metabolic control. RESEARCH DESIGN AND METHODS Blood samples were analyzed in a Couette rheometer at 32 MHz following shear rate reductions from 500 s(-1) to residual shears of 0 (stasis), 1, 2, 10, 50, 100, and 200 s(-1). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasound in medicine & biology
دوره 43 12 شماره
صفحات -
تاریخ انتشار 2017